Skip to content Skip to sidebar Skip to footer

Atmos Chem Phys Ball Continuous Decline in Lower Stratospheric Ozone Offsets Ozone Layer Recovery

References

  1. Molina, M. J. & Rowland, F. S. Stratospheric sink for chlorofluoromethanes: chlorine atomic-catalysed destruction of ozone. Nature 249, 810–812 (1974).

    Article  Google Scholar

  2. Handbook for the Montreal Protocol on Substances that Deplete the Ozone Layer 12th edn (UNEP, 2018); http://ozone.unep.org/sites/default/files/MP_handbook-english-2018.pdf

  3. Prinn, R. G. et al. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth Syst. Sci. Data 10, 985–1018 (2018).

    Article  Google Scholar

  4. Engel, A. et al. Scientific Assessment of Ozone Depletion: 2018 Report No. 58, Ch. 1 (Global Ozone Research and Monitoring Project, WMO, 2018).

  5. Kuttippurath, J., Kumar, P., Nair, P. J. & Pandey, P. C. Emergence of ozone recovery evidenced by reduction in the occurrence of Antarctic ozone loss saturation. npj Clim. Atmos. Sci. 1, 42 (2018).

    Article  Google Scholar

  6. Solomon, S. et al. Emergence of healing in the Antarctic ozone layer. Science 353, 269–274 (2016).

    Article  Google Scholar

  7. Shepherd, T. G. et al. Reconciliation of halogen-induced ozone loss with the total-column ozone record. Nat. Geosci. 7, 443–449 (2014).

    Article  Google Scholar

  8. Scientific Assessment of Ozone Depletion: 2018 Report No. 58 (Global Ozone Research and Monitoring Project, WMO, 2018).

  9. Montzka, S. A. et al. An unexpected and persistent increase in global emissions of ozone-depleting CFC-11. Nature 557, 413–417 (2018).

    Article  Google Scholar

  10. Vollmer, M. K. et al. Atmospheric histories and emissions of chlorofluorocarbons CFC-13 (CClF3), ΣCFC-114 (C2Cl2F4), and CFC-115 (C2ClF5). Atmos. Chem. Phys. 18, 979–1002 (2018).

    Article  Google Scholar

  11. Laube, J. C. et al. Newly detected ozone-depleting substances in the atmosphere. Nat. Geosci. 7, 266–269 (2014).

    Article  Google Scholar

  12. Hossaini, R. et al. The increasing threat to stratospheric ozone from dichloromethane. Nat. Commun. 8, 15962 (2017).

    Article  Google Scholar

  13. Fang, X. et al. Rapid increase in ozone-depleting chloroform emissions from China. Nat. Geosci. 12, 89–93 (2019).

    Article  Google Scholar

  14. Chipperfield, M. P. et al. Detecting recovery of the stratospheric ozone layer. Nature 549, 211–218 (2017).

    Article  Google Scholar

  15. Dhomse, S. S. et al. Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmos. Chem. Phys. 18, 8409–8438 (2018).

    Article  Google Scholar

  16. Rigby, M. et al. Increase in CFC-11 emissions from eastern China based on atmospheric observations. Nature 569, 546–550 (2019).

    Article  Google Scholar

  17. Carpenter, L. J. et al. Scientific Assessment of Ozone Depletion: 2018 Report No. 58, Ch. 6 (Global Ozone Research and Monitoring Project, WMO, 2018).

  18. Scientific Assessment of Ozone Depletion: 2014 Report No. 55 (Global Ozone Research and Monitoring Project, WMO, 2014); https://www.wmo.int/pages/prog/arep/gaw/ozone_2014/full_report_TOC.html

  19. Sherry, D., McCulloch, A., Liang, Q., Reimann, S. & Newman, P. A. Current sources of carbon tetrachloride (CCl4) in our atmosphere. Environ. Res. Lett. 13, 024004 (2018).

    Article  Google Scholar

  20. Lunt, M. F. et al. Continued emissions of the ozone-depleting substance carbon tetrachloride from Eastern Asia. Geophys. Res. Lett. 45, 11423–11430 (2018).

    Article  Google Scholar

  21. Hossaini, R. et al. Growth in stratospheric chlorine from short-lived chemicals not controlled by the Montreal Protocol. Geophys. Res. Lett. 42, 4573–4580 (2015).

    Article  Google Scholar

  22. Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).

    Article  Google Scholar

  23. Eyring, V. et al. Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmos. Chem. Phys. 10, 9451–9472 (2010).

    Article  Google Scholar

  24. Hegglin, M. I. & Shepherd, T. G. Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nat. Geosci. 2, 687–691 (2009).

    Article  Google Scholar

  25. Butchart, N. & Scaife, A. A. Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature 410, 799–802 (2001).

    Article  Google Scholar

  26. Williams, M. B., Aydin, M., Tatum, C. & Saltzman, E. S. A 2000 year atmospheric history of methyl chloride from a South Pole ice core: evidence for climate-controlled variability. Geophys. Res. Lett. 34, L07811 (2007).

    Google Scholar

  27. Pilinis, C., King, D. B. & Saltzman, E. S. The oceans: a source or a sink of methyl bromide? Geophys. Res. Lett. 23, 817–820 (1996).

    Article  Google Scholar

  28. Tegtmeier, S. et al. Oceanic bromoform emissions weighted by their ozone depletion potential. Atmos. Chem. Phys. 15, 13647–13663 (2015).

    Article  Google Scholar

  29. Liang, Q., Strahan, S. E. & Fleming, E. L. Concerns for ozone recovery. Science 358, 1257–1258 (2017).

    Article  Google Scholar

  30. Global Mitigation of Non-CO 2 Greenhouse Gases: 2010–2030 (EPA, 2013); https://www.epa.gov/sites/production/files/2016-06/documents/mac_report_2013.pdf

  31. Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).

    Article  Google Scholar

  32. Kanter, D. et al. A post-Kyoto partner: considering the stratospheric ozone regime as a tool to manage nitrous oxide. Proc. Natl Acad. Sci. USA 110, 4451–4457 (2013).

    Article  Google Scholar

  33. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

    Article  Google Scholar

  34. Rasch, P. J. et al. An overview of geoengineering of climate using stratospheric sulphate aerosols. Philos. Trans. R. Soc. Lond. A 366, 4007–4037 (2008).

    Article  Google Scholar

  35. Tilmes, S., Muller, R. & Salawitch, R. The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science 320, 1201–1204 (2008).

    Article  Google Scholar

  36. Keith, D. W., Weisenstein, D. K., Dykema, J. A. & Keutsch, F. N. Stratospheric solar geoengineering without ozone loss. Proc. Natl Acad. Sci. USA 113, 14910–14914 (2016).

    Article  Google Scholar

Download references

Acknowledgements

X.F. and R.G.P. were supported by NASA grant numbers NAG5-12669, NNX07AE89G, NNX11AF17G and NNX16AC98G to MIT. S.P. was supported by the National Strategic Project-Fine particle of the NRF funded by the MSIT, ME and MOHW (grant no. NRF-2017M3D8A1092225). We thank the station personnel at AGAGE stations for continuously measuring atmospheric N2O, CH2Cl2, CHCl3 and other referenced species, and R. H. Wang at the Georgia Institute of Technology for producing global monthly mean data of these species from the measurements from individual AGAGE stations. We thank Z. Dai from Harvard University for useful discussions on stratospheric geoengineering.

Author information

Authors and Affiliations

Contributions

X.F. and R.G.P. were responsible for the overall project design. All authors wrote the manuscript.

Corresponding author

Correspondence to Xuekun Fang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Pyle, J.A., Chipperfield, M.P. et al. Challenges for the recovery of the ozone layer. Nat. Geosci. 12, 592–596 (2019). https://doi.org/10.1038/s41561-019-0422-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI : https://doi.org/10.1038/s41561-019-0422-7

bishoplifflosight.blogspot.com

Source: https://www.nature.com/articles/s41561-019-0422-7

Post a Comment for "Atmos Chem Phys Ball Continuous Decline in Lower Stratospheric Ozone Offsets Ozone Layer Recovery"